EE 508 Lecture 18

Comparison of Filter Structures
 Sensitivity Functions

How does the performance of these bandpass filters compare?

- Component Spread
- Number of Op Amps
- Is the performance strongly dependent upon how DOF are used?
- Ease of tunability/calibration (but practical structures offen are not calibrated)
- Total capacitance or total resistance
- Power Dissipation
- Sensitivity
- Effects of Op Amps

Consider 2 ${ }^{\text {nd }}$ Order Lowpass Biquads

$$
\begin{gathered}
|T(s)|=H \frac{\omega_{0}^{2}}{s^{2}+s\left(\frac{\omega_{0}}{Q}\right)+\omega_{0}^{2}} \\
B W=\omega_{B}-\omega_{A} \neq \frac{\omega_{0}}{Q} \\
\omega_{\text {PEAK }} \neq \omega_{0}
\end{gathered}
$$

Consider $2^{\text {nd }}$ Order Lowpass Biquads

$$
|T(s)|=H \frac{\omega_{0}^{2}}{s^{2}+s\left(\frac{\omega_{0}}{Q}\right)+\omega_{0}^{2}}
$$

Four basic structures that ideally implement the same transfer function

Sallen and Key +KRC

Two Integrator Loop

Sallen and Key -KRC

Bridged-T Feedback

Consider 2 ${ }^{\text {nd }}$ Order Lowpass Biquads

Consider 2nd Order Lowpass Biquads

Example: $2^{\text {nd }}$ Order + KRC Lowpass

Example: $2^{\text {nd }}$ Order +KRC Lowpass

$$
\begin{gathered}
\text { Equal } R, K=1 \\
T(s)=K \frac{\frac{1}{R^{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{2}{R C_{1}}\right]+\frac{1}{R^{2} C_{1} C_{2}}} \\
\omega_{0}=\frac{1}{R \sqrt{C_{1} C_{2}}} \quad Q=\frac{1}{2} \sqrt{\frac{C_{1}}{C_{2}}}
\end{gathered}
$$

Amplifier with gain H

$$
A(s)=\frac{V_{0}}{V^{+}-V^{-}}=\frac{G B}{s}
$$

$$
K(s)=\frac{K_{0}}{1+\frac{K_{0}}{G B} s}
$$

Example: $2^{\text {nd }}$ Order +KRC Lowpass

Equal R, Equal C

$$
\begin{array}{r}
\text { consider } \\
\bullet \\
G B_{n}=\frac{G B}{\omega_{0}}=100
\end{array}
$$

Equal R, K=1

Example: $2^{\text {nd }}$ Order -KRC Lowpass

Equal R, Equal C

$$
\begin{aligned}
& T(s)=-K \frac{\frac{1}{R^{2} C^{2}}}{s^{2}+s\left[\frac{5}{R C}\right]+\left[\frac{5+K}{R^{2} C^{2}}\right]} \\
& \omega_{0}=\frac{\sqrt{5+K}}{R C} \quad Q=\frac{\sqrt{5+K}}{5}
\end{aligned}
$$

Example: $2^{\text {nd }}$ Order -KRC Lowpass

$$
K(s)=-\frac{K_{0}}{1+\frac{\left(1+K_{0}\right) s}{G B}}
$$

Poles "move" towards RHP as GB degrades Even very large values of $G B$ will cause instability

Example: 2nd Bridged-T FB Lowpass

Equal R

$$
\begin{aligned}
& T(s)=-\frac{\frac{1}{R^{2} C_{1} C_{2}}}{s^{2}+s\left(\frac{3}{R C_{1}}\right)+\frac{1}{R^{2} C_{1} C_{2}}} \\
& \omega_{0}=\frac{1}{R \sqrt{C_{1} C_{2}}} \quad Q=\frac{1}{2} \sqrt{\frac{C_{1}}{C_{2}}}
\end{aligned}
$$

Example: $2^{\text {nd }}$ Bridged-T FB Lowpass

$$
A(s)=\frac{V_{0}}{V^{+}-V^{-}}=\frac{G B}{s}
$$

Example: $2^{\text {nd }}$ Two-Integrator-Loop Lowpass

Equal R, Equal C
(except R_{Q})
$T(s)=-\frac{\frac{1}{R^{2} C^{2}}}{s^{2}+s\left(\frac{1}{C R_{Q}}\right)+\frac{1}{R^{2} C^{2}}}$
$\omega_{0}=\frac{1}{R C}$
$\mathrm{Q}=\frac{\mathrm{R}_{\mathrm{Q}}}{\mathrm{R}}$

Example: $2^{\text {nd }}$ Two-Integrator-Loop Lowpass

$$
\omega_{0}=\frac{1}{R C} \quad Q=\frac{R_{Q}}{R}
$$

consider
$\bullet \longleftrightarrow \mathrm{GB}_{\mathrm{n}}=\frac{\mathrm{GB}}{\omega_{0}}=100$

$$
\begin{aligned}
& \mathrm{V}^{-} \\
& \mathrm{A}(\mathrm{~s})=\frac{\mathrm{V}_{0}}{\mathrm{~V}^{+}-\mathrm{V}^{-}}=\frac{\mathrm{GB}}{\mathrm{~s}}
\end{aligned}
$$

Poles "move" towards RHP as GB degrades

Some Observations

- Seemingly similar structures have dramatically different sensitivity to frequency response of the Op Amp
- Critical to have enough GB if filter is to perform as desired
- Performance strongly affected by both magnitude and direction of pole movement
- Some structures appear to be totally impractical - at least for larger Q
- Different use of the Degrees of Freedom produces significantly different results

Sensitivity analysis is useful for analytical characterization of the performance of a filter

What causes the dramatic differences in performance between these two structures? How can the performance of different structures be compared in general?

$$
T(s)=K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1-K}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

Equal R, Equal C, Q=10 Pole Locus vs GB_{N}

$$
T(s)=-K \frac{\overline{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)\right]+\left[\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}\right]}
$$

How can the performance of different structures be compared in general?

$T(s)=K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1-K}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}$

$$
Q=\frac{1}{\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}+(1-K) \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}} \quad \omega_{0}=\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}
$$

$T(s)=-K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)\right]+\left[\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}\right]}$
$\omega_{0}=\sqrt{\frac{1+\left(\mathrm{R}_{1} / \mathrm{R}_{3}\right)(1+\mathrm{K})+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}$
$\mathrm{Q}=\frac{\sqrt{\frac{1+\left(\mathrm{R}_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}}}{\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)}$

- Equations for key performance parameters give little insight into the differences
- Expressions for key performance parameters quite complicated

How can the performance of different structures be compared in general?
Equal R, Equal C implementations

$$
\begin{array}{r}
T(s)=K \frac{\frac{1}{R^{2} C^{2}}}{s^{2}+s\left[\frac{(3-K)}{R C}\right]+\frac{1}{R^{2} C^{2}}} \\
Q=\frac{1}{3-K} \quad \omega_{0}=\frac{1}{R C} \\
T(s)=-K \frac{\frac{1}{R^{2} C^{2}}}{s^{2}+s\left[\frac{5}{R C}\right]+\left[\frac{5+K}{R^{2} C^{2}}\right]} \\
Q=\frac{\sqrt{5+K}}{5} \quad \omega_{0}=\frac{\sqrt{5+K}}{R C}
\end{array}
$$

- Analytical expressions for ω_{0} and Q much simpler
- Equations for key performance parameters give little insight into the differences
- Effects of individual components is obscured in these expressions
- GB effects absent in this analytical formulation !!!!

Modeling of the Amplifiers

Different implementations of the amplifiers are possible Have used the op amp time constant in these models $\tau=\mathrm{GB}^{-1}$

GB effects in +KRC Lowpass Filter

$$
T(s)=K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1-K}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}}
$$

$$
\begin{aligned}
& T(s)=\frac{}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{}{R_{2}}\right.} \\
& \omega_{0}=\frac{1}{\sqrt{R_{1} R_{2} C_{1} C_{2}}}
\end{aligned}
$$

$$
\mathrm{K}_{0}
$$

$$
\mathrm{K}(\mathrm{~s})=\frac{\mathrm{K}_{0}}{1+\mathrm{K}_{0} \tau \mathrm{~s}}
$$

$$
T(s)=\frac{\frac{K_{0}}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{\left(1-K_{0}\right)}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}+K_{0} \tau s\left(s^{2}+s\left[\frac{1}{R_{1} C_{1}}+\frac{1}{R_{2} C_{1}}+\frac{1}{R_{2} C_{2}}\right]+\frac{1}{R_{1} R_{2} C_{1} C_{2}}\right)}
$$

$$
Q=\frac{1}{\sqrt{\frac{R_{2} C_{2}}{R_{1} C_{1}}}+\sqrt{\frac{R_{1} C_{2}}{R_{2} C_{1}}}+(1-K) \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}}
$$

ω_{0} and Q in these expressions are for ideal op amp

$$
\begin{aligned}
& \left.T(s)=\frac{K_{0} \omega_{0}^{2}}{s^{2}+s\left[\frac{\omega_{0}}{Q}\right]+\omega_{0}^{2}+K_{0} \tau s\left(s^{2}+s\left[\frac{\omega_{0}}{Q}\left(1+K_{0} Q \sqrt{\frac{R_{1} C_{1}}{R_{2} C_{2}}}\right)\right]+\omega_{0}^{2}\right.}\right) \\
& T(s)=\frac{\frac{K_{0}}{R_{1} R_{2} C_{1} C_{2}}}{D_{1}(s)+K_{0} \tau s\left(D_{R C 0}(s)\right)} \quad \begin{array}{ll}
D_{1}(s) \text { is the } D(s) \text { if the OA is ideal } \\
D_{R C 0}(s) \text { is the } D(s) \text { of RC circuit with } K=0
\end{array}
\end{aligned}
$$

All linear performance effects can be obtained from this formulation Op amp introduced an additional pole and moves the desired poles

GB effects in -KRC Lowpass Filter

$$
T(s)=-K \frac{\frac{1}{R_{1} R_{2} C_{1} C_{2}}}{s^{2}+s\left[\frac{1}{R_{1} C_{1}}\left(1+\frac{R_{1}}{R_{3}}\right)+\frac{1}{R_{4} C_{2}}+\frac{1}{R_{2} C_{2}}\left(1+\frac{C_{2}}{C_{1}}\right)\right]+\left[\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}\right]}
$$

$$
\mathrm{K}(\mathrm{~s})=\frac{-\mathrm{K}_{0}}{1+\left(1+\mathrm{K}_{0}\right) \tau \mathrm{s}}
$$

$\mathrm{Q}=\frac{\sqrt{\frac{1+\left(\mathrm{R}_{1} / \mathrm{R}_{3}\right)(1+\mathrm{K})+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}}{\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}\right)+\frac{1}{\mathrm{R}_{4} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\left(1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)}$

$$
\omega_{0}=\sqrt{\frac{1+\left(R_{1} / R_{3}\right)(1+K)+\left(R_{1} / R_{4}\right)\left(1+\left(R_{2} / R_{3}\right)+\left(R_{2} / R_{1}\right)\right)}{R_{1} R_{2} C_{1} C_{2}}}
$$

ω_{0} and Q in these expressions are for ideal op amp

GB effects in KRC and -KRC Lowpass Filter

$$
\left.T(s)=\frac{\mathrm{K}_{0} \omega_{0}^{2}}{s^{2}+s\left[\frac{\omega_{0}}{\mathrm{Q}}\right]+\omega_{0}^{2}+\mathrm{K}_{0} \tau \mathrm{~s}\left(\mathrm{~s}^{2}+\mathrm{s}\left[\frac{\omega_{0}}{\mathrm{Q}}\left(1+\mathrm{K}_{0} \mathrm{Q} \sqrt{\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{R}_{2} \mathrm{C}_{2}}}\right)\right]+\omega_{0}^{2}\right.}\right)
$$

$$
T(s)=\frac{K_{0}}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}} \mathrm{D}_{\mathrm{I}}(\mathrm{~s})+\mathrm{K}_{0} \tau \mathrm{~s}\left(\mathrm{D}_{\mathrm{RCO}}(\mathrm{~s})\right),
$$

$$
\begin{aligned}
\mathrm{T}(\mathrm{~s})=-\mathrm{K}_{0} & \frac{\frac{1}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\left(\mathrm{~s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}\right)+\frac{1}{\mathrm{R}_{4} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\left(1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)\right]+\left[\frac{1+\left(\mathrm{R}_{1} / R_{3}\right)\left(1+\mathrm{K}_{0}\right)+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right]\right)} \\
& +\tau \mathrm{s}\left(1+\mathrm{K}_{0}\right)\left(\mathrm{s}^{2}+\mathrm{s}\left[\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}\left(1+\frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}\right)+\frac{1}{\mathrm{R}_{4} \mathrm{C}_{2}}+\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}\left(1+\frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}\right)\right]+\left[\frac{1+\left(\mathrm{R}_{1} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{1} / \mathrm{R}_{4}\right)\left(1+\left(\mathrm{R}_{2} / \mathrm{R}_{3}\right)+\left(\mathrm{R}_{2} / \mathrm{R}_{1}\right)\right)}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}\right]\right)
\end{aligned}
$$

$$
T(s)=\frac{\frac{-\mathrm{K}_{0}}{\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}}}{\mathrm{D}_{1}(\mathrm{~s})+\left(1+\mathrm{K}_{0}\right) \tau \mathrm{s}\left(\mathrm{D}_{\mathrm{RCO}}(\mathrm{~s})\right)}
$$

All linear performance effects can be obtained from this formulation Op amp introduced an additional pole and moves the desired poles

Effects of GB on poles of KRC and -KRC Lowpass Filters

Stay Safe and Stay Healthy !

End of Lecture 18

